Preliminary communication

Structure-dependent, molecular-motion parameters of branched-chain polysaccharides*

PHILIP A. J. GORIN and MYTOSK MAZUREK

Prairie Regional Laboratory, National Research Council, Saskatoon, Saskatchewan S7N 0W9 (Canada) (Received March 12th, 1979; accepted for publication, March 27th, 1979)

Signal characteristics of ¹³C-nuclear magnetic resonance (n.m.r.) spectra depend on the rate of motion of the solute molecules, a rate that modulates the spin-lattice relaxation time T_1 , the spin-spin relaxation time T_2 , and the nuclear Overhauser enhancement (n.O.e.) of the ¹³C nucleus^{1,2}. In solutions of polysaccharides which have long correlation times (δ_c) of \geq 10 ns, the nuclei have low n.O.e. values which lead to decreased signal intensity, and short T_2 values resulting in wide signals³⁻⁵. The latter effect is aggravated in gels, so that signals of ¹³C nuclei in the vicinity of junction zones disappear⁴⁻⁶. However, T_1 values should be short, so that frequent pulses can be applied, and data accumulation is rapid. Few T_1 values have been reported for polysaccharides, but those of bovine nasal cartilage and chondroitin 4-sulfate⁴, and of gels and solutions of a β -D-(1-3)-linked D-glucopyranan from Alcaligenes faecalis⁵ are from 0.06 to 0.09 s.

The segmental motion of different units in oligosaccharides can be compared through the T_1 values of their component nuclei, and interpreted in terms of chemical structure. Stachyose $[O-\alpha-D$ -galactopyranosyl- $(1\rightarrow 6)$ - $O-\alpha-D$ -galactopyranosyl- $(1\rightarrow 6)$ -O- α -D-galactopyranosyl- $(1\rightarrow 6)$ -O- α -D-galactopyranosyl β -D-fructofuranoside] contains a D-galactopyranosyl end-group having higher T_1 values and greater mobility than the (interior) D-galactopyranosyl residue⁷. By contrast, in a trisaccharide consisting of N-acetyl- β -neuraminic acid $(2\rightarrow 3)$ -linked to the D-galactosyl group of a lactose residue, the T_1 values of resonances of the D-glucosyl and D-galactosyl residues were 0.11-0.26 s more than the 0.05 s reported for one of the nuclei of the highly solvated, nonreducing end-group, which acts as an anchor⁸. Such an effect also occurs in a glycoside consisting of a bulky strophanthidin aglycon attached to an O- β -D-glucopyranosyl- $(1\rightarrow 6)$ -O-D-glucopyranosyl- $(1\rightarrow 4)$ - β -D-cymaropyranosyl sequence. The T_1 values of the pyranose-ring nuclei increased⁹ on going from the strophanthidin-linked cymarose unit (0.11-0.20 s) through the (internal) D-glucosyl residue to the D-glucosyl end-group (0.31-0.37 s). Thus, in branched-chain polysaccharides, segmental motion should be greater in side-chain units than in those of the main chain.

The present study is the first to be made on the determination of T_1 and n.O.e. values (25.2 MHz) of branched-chain polysaccharides. T_1 values were measured by using

^{*}NRCC No. 17382.

degassed, 20% solutions in D_2O , by the Freeman-Hill modification of the inversion-recovery, Fourier-transform method, 20 τ -values being used to define large signals, and 10 for smaller ones. The minimum accuracy was within $\pm 10\%$. Values of n.O.e. were determined by comparison of the signal sizes obtained in a conventional spectrum and in one obtained by the anti-gated technique 11,12, all other instrumentational parameters being the same. D-Mannose-containing polysaccharides having the principal repeating-structures 1, 2, 3, 4 (ref. 13), 5, and 6 (ref. 14) were investigated. As may be seen from Tables I and II,

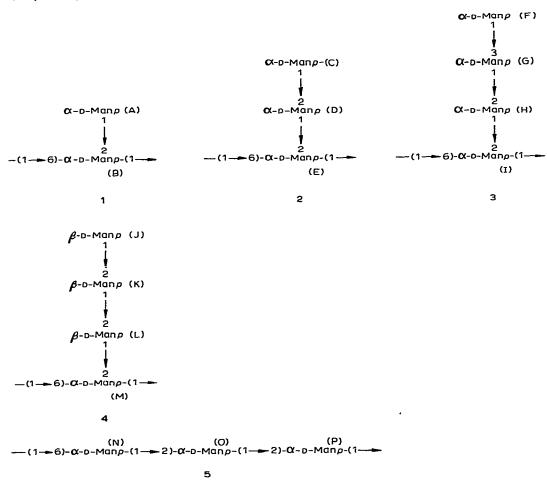


TABLE I T_1 AND n.O.e. VALUES OF 13 C NUCLEI OF Saccharomyces fragilis MANNAN, AN α -D- $(1\rightarrow6)$ -LINKED D-MANNOPYRANAN, AND AN L-RHAMNO-D-MANNAN FROM Sporothrix schenckii, DETERMINED AT VARIOUS TEMPERATURES

Polysaccharide	Signal shift ^a (assignment ^b)	T ₁ (s) (n.O.e. values in parentheses)			
		30°	70°	90°	
Saccharomyces	103.7; C-1, A	0.11 (1.92)	0.17 (2.01)	0.22 (2.38)	
fragilis mannan	100.0; C-1, B	0.09 (1.58)	0.10 (1.92)	0.11 (2.31)	
(repeating unit 1)	80.1; C-2, B	0.09 (1.67)	0.09 (1.83)	0.12 (1.91)	
	62.8; C-6, A	0.07 (2.18)	0.13 (2.35)	0.20 (2.59)	
(1→6)-α-D-	101.1; C-1	0.11 (2.74)	0.28	0.31 (2.91)	
Mannopyranan	71.7; C-3	0.12 (2.29)	0.19	0.27 (2.64)	
	68.5; C-4	0.12 (2.54)	0.22	0.30 (2.68)	
	67.5; C-6	0.07 (2.44)	0.17	0.20 (2.68)	
Sporothrix	101.5; C-1, R	0.08 (1.91)	0.11 (2.18)	0.12	
schenckii	98.3; C-1, Q	0.16 (1.73)	0.16 (2.10)	0.19	
L-Rhamno-D-mannan	77.0; C-3, R	0.09 (1.34)	0.13 (2.09)	0.12	
(repeating unit 6)	73.8; C-4, Q	0.11 (1.88)	0.14 (2.52)	0.18	
	70.4; C-5, Q	0.12 (2.30)	0.12 (2.15)	0.15	
	67.9; C-2, R	0.08 (2.08)	0.08 (2.20)	0.10	
	66.5; C-4, R	0.08 (1.78)	0.08 (1.91)	0.11	
	18:4; CH ₃ , Q	- (2.49)	0.41 (2.79)	0.44	

^a Chemical shifts, determined at 70° , relative to external tetramethylsilane. ^b A, B, Q, and R refer to units depicted.

TABLE II $T_{\rm 1} \ {\rm AND} \ {\rm n.O.e.} \ {\rm VALUES} \ {\rm OF} \ {\rm VARIOUS} \ {\rm ^{13}C} \ {\rm NUCLEI} \ {\rm OF} \ {\rm MANNANS}, \ {\rm DETERMINED} \ {\rm AT} \ 70^{\circ}$

Repeating unit	Signal shift	Assignment	T ₁ (s)	Repeating unit	Signal shift	Assignment	T ₁ (s)
Endomycopsis	103.7	C-1, A	0.16ª	Citeromyces	102.6	C-1, K and L	0.31
fibuliger	100.0	C-1, B	0.09	matritensis	101.6	C-1, M	0.11
1	80.1	C-2, B	0.11	4	101.2	C-1, J	0.26
	62.8 C-6, A	C-6, A	0.14^{a}		80.6	C-2, M	0.21
Saccharomyces	103.7	C-1, C	0.20		80.1	C-2, K and L	0.33
rouxii	102.2	C-1, D	0.13	Hansenula	103.7	C-1, N	0.14 (2.07)
2	99.1	C-1, E	0.09	capsulata ^b	102.8	C-1, O	0.14 (2.21)
Saccharomyces cerevisiae 3	103.7 102.2 99.1	C-1, F and G C-1, H C-1, I	0.18 0.12 0.08	5	100.3 79.4	C-1, P C-2, O and P	0.14 (2.76) 0.14 (2.13)

^a Average value, due to the presence of minor O- α -D-mannopyranosyl- $(1\rightarrow 3)$ -O- α -D-mannopyranosyl- $(1\rightarrow 2)$ sidechains having two C-1 signals of δ_C 103.7. ^b n.O.e. value given in parentheses.

side-chain nuclei have higher T_1 values than those of the main chain. For structure 2, the T_1 values of C-1 are in the order: nonreducing end-group C (0.20 s) > adjacent side-chain unit D (0.13 s) > main-chain unit E (0.09 s). (A similar order of T_1 values was observed for structure 3, although the C-1 signals for units F and G are superimposed, and only an average value was obtainable.) Such values are analogous to those obtained by Levy et al. 15 for branched-chain poly(n-alkyl methacrylates) which were less segmentally mobile on going from the terminal CH₃ groups of the n-alkyl side-chain to the main chain.

Like the T_1 values, the n.O.e. values of branched-chain polysaccharides increase with temperature, but the magnitude of the latter has no apparent correlation with segmental motion (see Table I).

The 13 C-n.m.r. spectrum of 1, determined at 30° , contained a C-1 signal (see Table I) of main-chain unit B, whose line width $\nu_{1/2}$ was 12.3 Hz, a magnitude appreciably different from that of side-chain unit A, which was 8.6 Hz. The difference was less pronounced at 70° (7.1 and 8.4 Hz) and at 90° (6.6 and 6.8 Hz, respectively).

The T_1 values of C-1 of a linear D-mannan (from *Hansenula capsulata*) which contains consecutive (1 \rightarrow 2)-, (1 \rightarrow 2)-, and (1 \rightarrow 6)-linked α -D-mannopyranosyl units N, O, and P (see 5) were not distinguishable, being 0.14 s at 70° (see Table II).

High T_1 values of ~0.3 s were observed for C-1, C-3, C-4, and C-6 nuclei of an α -D-(1 \rightarrow 6)-linked D-mannopyranan¹⁴ at 70 and 90° (see Table I) and for C-1 atoms of β -D-linked side-chains J, K, and L of structure 4 at 70° (see Table II). Although such values do not pose problems for preparation of conventional ¹³C-n.m.r. spectra, they indicate that determinations of T_1 are necessary prior to quantitation of signal intensities, in order to calculate a suitable delay in an anti-gated experiment¹¹, ¹². Caution is suggested in the use of high-field spectrometers¹⁷ for such experiments on polysaccharides, as T_1 values of nuclei in branched-chain lipids often increase with the magnetic field applied¹⁵.

Measurements of T_1 can be useful in distinguishing resonances of side chains from those of main chains. The C-1 signal of the main chain M of 4 is at δ_c 101.6, and has T_1 = 0.11 s. It is distinguishable from side-chain, C-1 resonances, which have $T_1 \sim 0.3$ s. Similarly, the C-2 signal at δ_c 80.6 can be assigned to signals of O-substituted C-2, as its T_1 value is 0.21 s [rather than 0.33 s, the value obtained for the side-chain signal of O-substituted C-2, at δ_c 80.1 (see Table II)]. The signals of side-chain and main-chain nuclei in an L-rhamno-D-mannan having the repeating unit 6 may also be distinguished in the same way (see Table I).

REFERENCES

¹ R. A. Komoroski, I. R. Peat, and G. C. Levy, Top. Carbon-13 N.m.r. Spectrosc., 2 (1976) 179-267.

² J. R. Lyerla, Jr., and G. C. Levy, Top. Carbon-13 N.m.r. Spectrosc., 1 (1974) 81-147.

³ C. F. Brewer and H. Keiser, Proc. Natl. Acad. Sci. U.S.A., 72 (1975) 3421-3423.

⁴ D. A. Torchia, M. A. Hasson, and V. C. Hascall, J. Biol. Chem., 252 (1977) 3617-3625.

- 5 H. Saito, T. Ohki, and T. Sasaki, Biochemistry, 16 (1977) 908-914.
- 6 T. A. Bryce, A. A. McKinnon, E. R. Morris, D. A. Rees, and D. Thom, Discuss. Faraday Soc., (1974) 221-229.
- 7 A. Allerhand and D. Doddrell, J. Am. Chem. Soc., 93 (1971) 2777-2779.
- 8 M. F. Czarniecki and E. R. Thornton, J. Am. Chem. Soc., 99 (1977) 8279-8282.
- 9 A. Neszmelyi, K. Tori, and G. Lukacs, J. Chem. Soc. Chem. Commun., (1977) 613-614.
- 10 R. Freeman and H. D. W. Hill, J. Chem. Phys., 51 (1969) 3140-3141.
- 11 G. C. Levy, J. D. Cargioli, and F. A. L. Anet, J. Am. Chem. Soc., 95 (1973) 1527-1535.
- 12 R. Freeman, H. D. W. Hill, and R. Kaptein, J. Magn. Reson., 7 (1972) 327-329.
- 13 P. A. J. Gorin, Can. J. Chem., 51 (1973) 2375-2383.
- 14 P. A. J. Gorin, R. H. Haskins, L. R. Travassos, and L. Mendonça-Previato, Carbohydr. Res., 55 (1977) 21-23.
- 15 G. C. Levy, D. E. Axelson, R. Schwartz, and J. Hochmann, J. Am. Chem. Soc., 100 (1978) 410-424.
- 16 P. A. J. Gorin and J. F. T. Spencer, Can. J. Microbiol., 18 (1972) 1709-1715.
- 17 F. A. L. Anet, Top. Carbon-13 N.m.r. Spectrosc., 1 (1974) 210-227.